Sustainable lithium batteries

Faradion's sodium-ion batteries are already being used by energy companies around the world to store renewable electricity. And they are just one alternative to our heavy and growing reliance on.
Contact online >>

Faradion''s sodium-ion batteries are already being used by energy companies around the world to store renewable electricity. And they are just one alternative to our heavy and growing reliance on...

Lithium-ion batteries offer a contemporary solution to curb greenhouse gas emissions and combat the climate crisis driven by gasoline usage. Consequently, rigorous research is currently underway to improve the performance and sustainability of current lithium-ion batteries or to develop newer battery chemistry.

Lithium-ion batteries could save the planet from petrol-driven cars, but do the batteries themselves live up to their sustainable reputation? Katharine Sanderson investigates efforts to make batteries better

Lithium-ion rechargeable batteries — already widely used in laptops and smartphones — will be the beating heart of electric vehicles and much else. They are also needed to...

Nickel-rich layered transition metal oxides are leading cathode candidates for lithium-ion batteries due to their increased capacity, low cost and enhanced environmental sustainability compared...

Create your free account to receive personalised content alerts and Re:action, our weekly newsletter of the top chemical science stories handpicked from a range of magazines, journals and websites alongside insight and analysis from our expert editorial team.

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Celebrating twenty years

By 2050 up to 1 billion vehicles on the roads will be powered by electricity, around 72 times more than in 2020. The electrified fleet could see an end to gas-guzzlers, smoggy cities and the stench of petrol fumes. These vehicles will be powered by lithium-ion rechargeable batteries.

But lithium-ion batteries have their own sustainability problems. As the demand for electric vehicles balloons in the coming years, a secondary environmental disaster could be on the cards unless the batteries used in those vehicles can be made in a more sustainable way, with consideration given to their full life cycle emists are front and centre of the battery story, from the early work by the scientists who shared the 2019 Nobel prize in chemistry to those around the world now trying to improve on the materials used in them.

Better batteries will need to use less scarce or problematic minerals, or better still none at all. And those they do use will need to be sourced in a sustainable way. A full life-cycle analysis of the components needs to be considered right at the start of materials development to ensure a supply of batteries into the future, a supply that doesn''t itself ravage the planet.

The main elements that need some serious thought include lithium and cobalt. In May 2021, the International Energy Agency published a report calling on governments to think now about the critical minerals that will be needed to power electric vehicles and sustain renewable energy in future. They highlight the huge increase in mineral demand as we shift from petrol-driven cars to electric ones – with six times more minerals required in an electric car, and the huge increase in their numbers, it doesn''t take a mathematician to work out that a lot more raw material will be required – enough to provide 1.8 million tonnes a year by 2030, according to some estimates.

But sustainable lithium production is possible – even in the UK. Cornish Lithium is making use of Cornwall''s mining heritage and unique geology to try and change lithium production. Cornwall sits on granite that is particularly rich in lithium. And deep underground are hot brines that contain lots of it.

It''s harder than it sounds. Those brines are like a hot soup seasoned with just a pinch of mixed minerals. To get just the lithium salts requires a very selective separating system. In the Cornish brines, Cornish Lithium chief executive Jeremy Wrathall says that in the deeper geothermal waters they are also exploring they have around 260ppm lithium, 6000ppm sodium, 2500ppm calcium and 5ppm magnesium salts. ''You''ve got to try and extract a small needle out of a very big haystack,'' says Cornish Lithium chief executive Jeremy Wrathall. To do this, they flow their brines through the DLE box, which is a column of adsorbent beads. Once the flow stops, the beads are then eluted with dilute hydrochloric acid. The lithium-free brines are finally pumped back underground.

Cornish Lithium showcased its mini pilot plant demo of its technology during the G7 summit, held in Cornwall in June this year. On site, they had started pumping brines from their small borehole and are testing different DLE methods. French firm Geolith are trialling their DLE kit in Cornwall. Their system has adsorbent particles grafted onto microfibres, and while details are kept under wraps, these microfibres are very selective for lithium ions. After running the brines through the system, the microfibres are then washed with acid to give concentrated lithium chlorides. And the brines, with the lithium ions removed, are then pumped back under ground.The chlorides that they can produce can also be converted to lithium carbonates or hydroxides.

Another company, Precision Periodic, has set up a rig at the Cornish Lithium plant. They use ceramic nanobeads with huge surface area. The brines are passed through columns filled with the beads, using gravity, and the company says that it works by adsorption rather than ion exchange, with only the lithium ions sticking to the column and the rest of the brine passing through. Hydrochloric acid is used to strip the lithium from the column. Another company, New Zealand''s Geo40, proposes using huge tanks full of adsorbents that picks out lithium ions selectively.

Wrathall sees the project as a chance for Cornwall – one of the most deprived corners of the UK – to rediscover its economic wealth from its previous mining heyday. The lithium could be used in a future nearby battery factory, with car manufacturing perhaps also brought to the area. Recycling plants could be built in.

And that''s not all, says Wrathall. ''This is the ultimate sustainable lithium because it you can also extract zero-carbon heat,'' he says. And with that geothermal heat comes power, some of which can be used to run the lithium plant and the rest can be used elsewhere, even in hydroponic agriculture.

And Cornwall isn''t the only place where lithium might be made sustainably. A project in the Rhine valley in Germany, run by Vulcan Energy Resources, is also striving to produce lithium with no carbon emissions. Their Zero Carbon Lithium pilot plant is operating already, and will inform the decision to fund a full scale facility by 2024, says Francis Wedin, chief executive of the project.

Vulcan''s project also uses geothermal energy, extracting lithium-rich brines and using DLE to get lithium out in the form of lithium chloride, which they then convert to a hydroxide. ''Europe, and indeed the world, needs all the lithium it can get,'' says Wedin. ''The current carbon footprint of the lithium industry is unacceptably high, so now that volumes of lithium demand are increasing so quickly, we see our technology and project as being critical to making sure that the transition to electric vehicles is done with a net zero carbon footprint.''

Moving on from the lithium in the battery, another seriously problematic component of the Nobel-prize winning lithium-ion batteries is in the cathode. The cathode in the battery commercialised by Sony in the 1990s, and still in widespread use today, is lithium cobalt oxide.

''Right now in terms of raw materials, the real problems are cobalt and nickel, this is a serious problem already,'' says Stefano Passerini at the Karlsruhe Institute of Technology in Germany. And of those two metals, cobalt is the most problematic. Cobalt reserves are predominantly in the Democratic Republic of Congo (DRC). The mining operations in DRC are brutal and have been widely condemned for the human rights abuses that go hand in hand with cobalt mining. Aside from the human cost, such a narrow supply chain can make the cost of cobalt wildly unpredictable and unstable.

Nickel manganese cobalt materials – known as NMCs – are looking promising as cathode materials. Serena Corr at the University of Sheffield, UK, leads the Faraday Institute''s Futurecat consortium. She explains why upping the nickel content is beneficial: ''When you increase the nickel content, you improve the energy density and push up the capacity,'' she says. ''The downside is it''s synthetically very challenging to make these materials.'' And that is because of nickel''s redox chemistry. ''To get the right oxidation state of nickel can be really challenging,'' Corr says. Her group is using microwave chemistry to try and make these high nickel-content spinel structures.

But nickel is only a short-term fix. Ultimately both cobalt and nickel will need to be replaced. Another cathode-focused Faraday Institute project, Catmat, is led by Saiful Islam at the University of Bath. ''NMC will probably dominate in the near term in electric vehicles,'' Islam says. But he is optimistic that eventually cobalt – and nickel – can both be completely replaced. ''We''re looking at, for example, manganese- and iron-based cathode materials, as manganese and iron are much more sustainable and much more naturally abundant.''

One of the main hurdles for greater energy density in a lithium ion battery is the energy density of the cathode

Passerini has a research group of over 50 scientists and between them they are looking at all parts of the battery. In particular he is interested in the binders that hold the electrodes in place in the battery and attach them to the current collector. The polymers currently used as binders need to be processed using organic solvents, and often contain fluorine – making them harsh to work with and difficult to recycle or dispose of benignly. By replacing these binders with aqueous systems instead, Passerini and others are hoping to overcome the environmental headaches associated with this little-known aspect of battery manufacture.

Passerini is also making electrolytes work better by designing additives to help stabilise the electrolyte and prevent it reacting too much with cathodes in high-voltage lithium-ion batteries, specifically NMC-type batteries. Passerini''s team recently came up with a combination of electrolyte additives that together stabilised the battery and also made it perform better.

Another advantage of this new electrolyte is that it can be recycled. The common electrolyte salt used, LiPF6, reacts with water to form HF, so it can''t be recycled easily. So used lithium-ion batteries end up being disposed of by burning them, explains Passerini.

Looking ahead, could the all-conquering lithium-ion rechargeable battery be replaced by a new, albeit related, technology? Current potential contenders include the solid-state lithium battery, the lithium-air battery, and even replacing lithium with sodium or other metals.

But even with tweaked components and sustainably sourced lithium, there''s an attitude shift needed if sustainable battery manufacture is every going to be reality. ''The best way to make a battery sustainable is to design a cell that can be easily recycled,'' Passerini says. This will be a long process, because for each individual sustainability win, finding a new material in one part of the battery often comes with a pay-off further along the battery process. For example, electrolytes can be made to be easily recycled, but when placed in a full cell they can end up corroding the aluminium current collector. Technology will mean that all these problems can be solved, Passerini says, but it will take time, and might mean the batteries are more expensive.

Back in Cornwall, Wrathall hopes to incorporate recycling into any future lithium battery plant. ''It is absolutely essential that we start thinking about recycling now,'' he says. ''But batteries are very difficult to recycle because some people have said it''s like trying to get flour out of bread.''

Passerini predicts more sustainable batteries will only become widely used when manufacturers have no option but to use them. Legislation will be the driving force, ultimately, in making batteries sustainable. In December 2020, the European Commission announced plans that could be the start of this.

Car manufacturers will have to get on board too. The good news is that it looks like this is possible. ''I see that the car makers at least are listening – a few years ago they didn''t care at all,'' says Passerini.

About Sustainable lithium batteries

About Sustainable lithium batteries

As the photovoltaic (PV) industry continues to evolve, advancements in Sustainable lithium batteries have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient Sustainable lithium batteries for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various Sustainable lithium batteries featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.