Planet mercury map

In December 2009, the first high-resolution global map of Mercury was made publicly available. These images are from MESSENGER, a NASA Discovery mission to conduct the first orbital study of the innermost planet, Mercury. Members of the MESSENGER team and experts from the U. S. Geological Survey (US
Contact online >>

In December 2009, the first high-resolution global map of Mercury was made publicly available. These images are from MESSENGER, a NASA Discovery mission to conduct the first orbital study of the innermost planet, Mercury. Members of the MESSENGER team and experts from the U. S. Geological Survey (USGS) used images from MESSENGER’s three Mercury flybys and from the Mariner 10 mission in 1974-75 to create a global mosaic that covers 97.7% of Mercury’s surface at a resolution of 500 meters/pixel (0.31 miles/pixel).Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/U. S. Geological Survey/Arizona State University

Mercury''s sidereal year (88.0 Earth days) and sidereal day (58.65 Earth days) are in a 3:2 ratio. This relationship is called spin–orbit resonance, and sidereal here means "relative to the stars". Consequently, one solar day (sunrise to sunrise) on Mercury lasts for around 176 Earth days: twice the planet''s sidereal year. This means that one side of Mercury will remain in sunlight for one Mercurian year of 88 Earth days; while during the next orbit, that side will be in darkness all the time until the next sunrise after another 88 Earth days.

Combined with its high orbital eccentricity, the planet''s surface has widely varying sunlight intensity and temperature, with the equatorial regions ranging from −170 °C (−270 °F) at night to 420 °C (790 °F) during sunlight. Due to the very small axial tilt, the planet''s poles are permanently shadowed. This strongly suggests that water ice could be present in the craters. Above the planet''s surface is an extremely tenuous exosphere and a faint magnetic field that is strong enough to deflect solar winds. Mercury has no natural satellite.

As of the early 2020s, many broad details of Mercury''s geological history are still under investigation or pending data from space probes. Like other planets in the Solar System, Mercury was formed approximately 4.5 billion years ago. Its mantle is highly homogeneous, which suggests that Mercury had a magma ocean early in its history, like the Moon. According to current models, Mercury may have a solid silicate crust and mantle overlying a solid outer core, a deeper liquid core layer, and a solid inner core. There are many competing hypotheses about Mercury''s origins and development, some of which incorporate collision with planetesimals and rock vaporization.

Mercury is one of four terrestrial planets in the Solar System, which means it is a rocky body like Earth. It is the smallest planet in the Solar System, with an equatorial radius of 2,439.7 kilometres (1,516.0 mi).[4] Mercury is also smaller—albeit more massive—than the largest natural satellites in the Solar System, Ganymede and Titan. Mercury consists of approximately 70% metallic and 30% silicate material.[27]

Craters on Mercury range in diameter from small bowl-shaped cavities to multi-ringed impact basins hundreds of kilometers across. They appear in all states of degradation, from relatively fresh rayed craters to highly degraded crater remnants. Mercurian craters differ subtly from lunar craters in that the area blanketed by their ejecta is much smaller, a consequence of Mercury''s stronger surface gravity.[61] According to International Astronomical Union rules, each new crater must be named after an artist who was famous for more than fifty years, and dead for more than three years, before the date the crater is named.[62]

The largest known crater is Caloris Planitia, or Caloris Basin, with a diameter of 1,550 km (960 mi).[63] The impact that created the Caloris Basin was so powerful that it caused lava eruptions and left a concentric mountainous ring ~2 km (1.2 mi) tall surrounding the impact crater. The floor of the Caloris Basin is filled by a geologically distinct flat plain, broken up by ridges and fractures in a roughly polygonal pattern. It is not clear whether they were volcanic lava flows induced by the impact or a large sheet of impact melt.[61]

At the antipode of the Caloris Basin is a large region of unusual, hilly terrain known as the "Weird Terrain". One hypothesis for its origin is that shock waves generated during the Caloris impact traveled around Mercury, converging at the basin''s antipode (180 degrees away). The resulting high stresses fractured the surface.[64] Alternatively, it has been suggested that this terrain formed as a result of the convergence of ejecta at this basin''s antipode.[65]

Overall, 46 impact basins have been identified.[66] A notable basin is the 400 km (250 mi)-wide, multi-ring Tolstoj Basin that has an ejecta blanket extending up to 500 km (310 mi) from its rim and a floor that has been filled by smooth plains materials. Beethoven Basin has a similar-sized ejecta blanket and a 625 km (388 mi)-diameter rim.[61] Like the Moon, the surface of Mercury has likely incurred the effects of space weathering processes, including solar wind and micrometeorite impacts.[67]

There are two geologically distinct plains regions on Mercury.[61][68] Gently rolling, hilly plains in the regions between craters are Mercury''s oldest visible surfaces,[61] predating the heavily cratered terrain. These inter-crater plains appear to have obliterated many earlier craters, and show a general paucity of smaller craters below about 30 km (19 mi) in diameter.[68]

Smooth plains are widespread flat areas that fill depressions of various sizes and bear a strong resemblance to lunar maria. Unlike lunar maria, the smooth plains of Mercury have the same albedo as the older inter-crater plains. Despite a lack of unequivocally volcanic characteristics, the localization and rounded, lobate shape of these plains strongly support volcanic origins.[61] All the smooth plains of Mercury formed significantly later than the Caloris basin, as evidenced by appreciably smaller crater densities than on the Caloris ejecta blanket.[61]

There is evidence for pyroclastic flows on Mercury from low-profile shield volcanoes.[74][75][76] Fifty-one pyroclastic deposits have been identified,[77] where 90% of them are found within impact craters.[77] A study of the degradation state of the impact craters that host pyroclastic deposits suggests that pyroclastic activity occurred on Mercury over a prolonged interval.[77]

The icy crater regions are estimated to contain about 1014–1015 kg of ice,[87] and may be covered by a layer of regolith that inhibits sublimation.[88] By comparison, the Antarctic ice sheet on Earth has a mass of about 4×1018 kg, and Mars''s south polar cap contains about 1016 kg of water.[87] The origin of the ice on Mercury is not yet known, but the two most likely sources are from outgassing of water from the planet''s interior and deposition by impacts of comets.[87]

Sodium, potassium, and calcium were discovered in the atmosphere during the 1980s–1990s, and are thought to result primarily from the vaporization of surface rock struck by micrometeorite impacts[94] including presently from Comet Encke.[95] In 2008, magnesium was discovered by MESSENGER.[96] Studies indicate that, at times, sodium emissions are localized at points that correspond to the planet''s magnetic poles. This would indicate an interaction between the magnetosphere and the planet''s surface.[97]

According to NASA, Mercury is not a suitable planet for Earth-like life. It has a surface boundary exosphere instead of a layered atmosphere, extreme temperatures, and high solar radiation. It is unlikely that any living beings can withstand those conditions.[98] Some parts of the subsurface of Mercury may have been habitable, and perhaps life forms, albeit likely primitive microorganisms, may have existed on the planet.[99][100][101]

It is likely that this magnetic field is generated by a dynamo effect, in a manner similar to the magnetic field of Earth.[105][106] This dynamo effect would result from the circulation of the planet''s iron-rich liquid core. Particularly strong tidal heating effects caused by the planet''s high orbital eccentricity would serve to keep part of the core in the liquid state necessary for this dynamo effect.[107][108]

Mercury''s magnetic field is strong enough to deflect the solar wind around the planet, creating a magnetosphere. The planet''s magnetosphere, though small enough to fit within Earth,[97] is strong enough to trap solar wind plasma. This contributes to the space weathering of the planet''s surface.[104] Observations taken by the Mariner 10 spacecraft detected this low energy plasma in the magnetosphere of the planet''s nightside. Bursts of energetic particles in the planet''s magnetotail indicate a dynamic quality to the planet''s magnetosphere.[97]

Mercury has the most eccentric orbit of all the planets in the Solar System; its eccentricity is 0.21 with its distance from the Sun ranging from 46,000,000 to 70,000,000 km (29,000,000 to 43,000,000 mi). It takes 87.969 Earth days to complete an orbit. The diagram illustrates the effects of the eccentricity, showing Mercury''s orbit overlaid with a circular orbit having the same semi-major axis. Mercury''s higher velocity when it is near perihelion is clear from the greater distance it covers in each 5-day interval. In the diagram, the varying distance of Mercury to the Sun is represented by the size of the planet, which is inversely proportional to Mercury''s distance from the Sun.

This varying distance to the Sun leads to Mercury''s surface being flexed by tidal bulges raised by the Sun that are about 17 times stronger than the Moon''s on Earth.[110] Combined with a 3:2 spin–orbit resonance of the planet''s rotation around its axis, it also results in complex variations of the surface temperature.[27] The resonance makes a single solar day (the length between two meridian transits of the Sun) on Mercury last exactly two Mercury years, or about 176 Earth days.[111]

Mercury''s orbit is inclined by 7 degrees to the plane of Earth''s orbit (the ecliptic), the largest of all eight known solar planets.[112] As a result, transits of Mercury across the face of the Sun can only occur when the planet is crossing the plane of the ecliptic at the time it lies between Earth and the Sun, which is in May or November. This occurs about every seven years on average.[113]

About Planet mercury map

About Planet mercury map

As the photovoltaic (PV) industry continues to evolve, advancements in Planet mercury map have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient Planet mercury map for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various Planet mercury map featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.