
Researchers at the University of Strathclyde have been working with an energy storage company to improve the efficiency of an innovative battery that could offer reliable, low-cost, low carbon power to homes and businesses in sub-Saharan Africa.
The researchers have been working with Edinburgh-based StorTera on a graphite polysulfide single liquid flow battery. The technology has the potential to support critical infrastructure such as telecommunications towers, facilitating the increased deployment of renewable power sources in the region, and to support the displacement of expensive and polluting fossil fuel-based back up generation.
The collaboration is part of a grant provided to the Faraday Institution from UK Aid as part of its Transforming Energy Access (TEA) Platform. The TEA Platform supports early-stage testing and scale up of innovative technologies and business models that will accelerate access to affordable, clean energy-based services to poor households and enterprises, especially in Africa.
Liquid flow batteries store energy in the electrolyte instead of at the electrodes. The energy stored by the cell can be increased by adding a larger liquid tank, without a corresponding increase in power. This is a key difference between this technology and other commonly used types of battery, such as lithium-ion, where power input and energy storage grow in tandem. Some flow battery technologies also operate well in widely varying temperatures, making them suitable for use in harsh climates.
This combination of low power, high capacity and long service life means that liquid flow batteries are potentially well suited to powering low-carbon energy grids in emerging economies. However, use of the technology is not without problems, as manufacturing is complex and the materials currently used are expensive.
StorTera has developed a potential solution to the manufacturing issue, with a spiral flow battery that can be manufactured using a roll-to-roll process, leading to increased efficiency, cost savings and a higher production rate.
The company worked with the team at Strathclyde to refine the system design and improve the electrolyte and electrode materials chemistry – including making the liquid component of the battery suitable for Sub-Saharan climates – while reducing costs.
The Electrochemical Engineering group at Strathclyde, led by Dr Edward Brightman, worked closely with StorTera to synthesise and characterise novel electrolyte formulations using lower cost, more sustainable solvents. They also investigated the influence of the graphite current collector and separator types on the cell performance.
Researchers demonstrated a reduced catholyte cost of 50% and reduced production costs of 50-70%, leading to an overall reduction of more than 20% in upfront costs of the system, to £70/kWh, and a 20% increase in durability, albeit at small scales.
StorTera then built a prototype system incorporating Strathclyde''s system improvements, which was tested byPNDC at Strathclyde. The system demonstrated more than 99% round trip efficiency on charging and discharging in a 15W/20Wh configuration. Fortuitously, testing during a UK-wide heatwave in July 2022 enabled the tests to be completed at temperatures comparable to those the flow battery would experience in sub-Saharan Africa.
In parallel, a team from Strathclyde''s Energy for Development group carried out a techno-economic modelling study, surveying stakeholders in Malawi and Zimbabwe about how the technology will be used and their requirements. This found that the liquid flow batteries can achieve cost savings of 20% - 50% over Li-ion and lead acid chemistries when used in micro grids. A scientific paper is being prepared to report the results of the study.
The prototype device developed is small, and the challenge for StorTera is now to demonstrate that the technology works at much larger scales; the aim is to build a 200kW/1.6MWh demonstrator by 2024. The company has subsequently secured £5m of funding from the UK Government''s Net Zero Innovation Portfolio (NZIP), which will support the development of a long-lasting megawatt scale battery that can operate for up to eight hours. The funding will enable the number of company employees to double to 28. The prototype cell performance also requires further improvements to achieve the desired cycle life and power density, which is the focus of ongoing work by StorTera.
For the Strathclyde team, working with StorTera has provided a pathway to take part in follow-on projects, as well as potentially to publish the outcomes of their research. As a result of the project, the University and StorTera have committed to joint funding of a PhD studentship, starting in the autumn of 2023, to build on the team''s work with a more in-depth study of the durability of flow batteries.
Dr Brightman, of Strathclyde''s Department of Chemical & Process Engineering, said: "This was a great opportunity for the Electrochemical Engineering group to work with PNDC and to help StorTera develop their technology. The Faraday Institution were enormously supportive throughout the project and we look forward to continuing our flow battery work with StorTera."
Pasidu Pallawela, StorTera''s Chief Technology Officer, said: "Using this kind of battery in developing countries, especially sub-Saharan Africa, is very feasible, and could be a cost-effective solution to integrate more renewable energy into the grid. These kinds of technologies will be required all around the world as we move towards net zero.
"Working with the Faraday Institution and the University of Strathclyde has been extremely useful for us. It has given us access to a network of academics who have done a lot of work in this area. Being able to call on their expertise has been invaluable as we look to bring this innovative product to market."
Magnetic imaging technology to protect infrastructure and security
Electric wallpaper among projects powering a net zero future in Scotland
Employers'' lack of understanding limiting job opportunities for people with learning disabilities, study finds
New network to address inequalities in future epidemic responses
ALEXANDRIA, Va., August 19, 2021 /3BL Media/ -The Global Battery Alliance (GBA) today announced the publication of a new report, Closing the Loop on Energy Access in Africa, developed in collaboration with the World Economic Forum, the Energy Storage Partnership, and the Faraday Institution, with lead authorship and analysis by Vivid Economics and Öko-Institut e.V. The report outlines key challenges and recommendations to meet Africa’s growing energy needs with sustainable solutions that also foster economic development.
Recommendations to address these issues include the creation of a coalition of stakeholders that will jointly work on market transformations through pilots, regulation, standards, enforcement, research and incentives. A first step will be to increase partnerships among stakeholders – African governments, industry, civil society, academia, battery-using sectors and financial institutions — across African countries and internationally.
“The Closing the Loop on Energy Access in Africa report advances the GBA 2030 Vision to foster a circular, responsible and just battery value chain as one of the major near-term drivers to realize The Paris Agreement goals in the transport and power sectors. Batteries could enable 30 percent of the required reductions from the transport and power sectors, and provide access to electricity to 600 million people without access, and could create up to 10 million safe and sustainable jobs around the world.” – Guy Ethier, Chair, GBA Board of Directors.
“Batteries play a critical role in energy access and an increasing role in transport systems in Sub-Saharan Africa. Supporting research on the end-of-first-life of batteries and the economic opportunities that their second-life applications offer to the region is critical to advancing Sustainable Development Goal 7 on affordable and clean energy. This work contributes to the Energy Storage Partnership''s mission to bring new technological and regulatory solutions to developing countries, as well as help develop new business models that leverage the full range of services that storage can provide.” – Juliet Pumpuni, Energy Storage Partnership (ESP) Secretariat Lead, World Bank Energy Sector Management Assistance Program (ESMAP)
“Increasing energy access and circular economy opportunities in Africa is a key topic in the Forum Agenda. The Closing the Loop on Energy Access report provides a foundation of accelerating battery deployment in a sustainable way. Repurposing and recycling of batteries can be key opportunities to African economies as demonstrated in this report. We look forward to the continuation of the work with the Global Battery Alliance and the Energy Storage Partnership, complementedby the work of theAfrican Circular Economy Allianceand the Forum initiative onMobilizing investments for clean energy in emerging economies.”– Chido Munyati, Acting Head of Regional Agenda, Africa
View the full report, Closing the Loop on Energy Access in Africa, here.
About Flow battery technology central africa
As the photovoltaic (PV) industry continues to evolve, advancements in Flow battery technology central africa have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Flow battery technology central africa for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Flow battery technology central africa featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.
Related Contents