Mercado et al. (2016), have presented a case study on optimal sizing of PV, DG, battery and wind-based hybrid system for powering a remote telecom tower. Techno-economic analysis results show that the COE is $0.448/kWh for the above hybrid system with 8 kW PV panel, 1 kW wind turbine, 5.5 kW DG and Contact online >>
Mercado et al. (2016), have presented a case study on optimal sizing of PV, DG, battery and wind-based hybrid system for powering a remote telecom tower. Techno-economic analysis results show that the COE is $0.448/kWh for the above hybrid system with 8 kW PV panel, 1 kW wind turbine, 5.5 kW DG and 600 Ah battery.
This paper addresses power consumption issues in future high-capacity switching and routing elements and examines different architectures based on both pure...
Together, mobile- and fixed-network consumption already account for more than 75 percent of telcos'' total energy consumption. Additional, exponential growth in data consumption over the next five years will likely offset the benefits of more energy-efficient data transmission protocols.
The electrical load and existing power supply options for telecom towers, and status of power availability in 21 selected locations across the country, are presented. Levelized cost of electricity (LCOE) is estimated for various potential power supply configurations.
Recent energy price hikes have hit the telecommunications sector hard, compounding the increased energy use involved with building out networks, traffic growth, and the ongoing transition away from legacy technologies. Energy spending was already a significant cost factor for telecom operators, at up to 5 percent of revenue, before recent price hikes. In the last few years, though, large operators have seen their energy cost increases outpace sales growth by more than 50 percent. Yet even as they set ambitious decarbonization targets, operators'' responses to rising energy-related costs have been muted so far, constrained by operational and organizational limitations.
It is possible, though, to achieve significant savings on energy, by combining analytics, procurement, and technology shifts with the right vision, strategy, and organizational approach. Our research shows that companies can achieve 15 to 30 percent savings in energy cost by using a holistic approach that combines technology solutions with site and equipment optimization, pricing, and operational levers to create substantial and sustainable change.
In this article, we assess the causes of energy cost increases and how operators are coping with them, and we offer a potential path forward through better site design, a shift toward energy-efficient technologies, analytics-based optimizations, and the implementation of pricing levers.
Geopolitical pressure and increased demand are expected to keep electricity prices high in most markets in the near term. According to the World Bank, for example, energy commodity prices are not expected to fall below pre-2022 levels in the coming year. For telecom operators, the problem is compounded by the expected growth in mobile traffic, which is forecast at more than 20 percent per year until 2030. This forces them to pay more for electricity and use more of it.
Together, mobile- and fixed-network consumption already account for more than 75 percent of telcos'' total energy consumption. Additional, exponential growth in data consumption over the next five years will likely offset the benefits of more energy-efficient data transmission protocols. In addition, site densification to support new wireless technologies such as 5G (and eventually 6G) will further increase telcos'' total energy consumption. And although fiber rollout is progressing, operators must still support multiple, less-energy-efficient legacy systems until all customers have migrated to the newer infrastructure.
At the same time, telcos are also making commitments to carbon neutrality that will require them to optimize their energy consumption. The industry as a whole has pledged to reach net zero by 2050 at the latest, and the most ambitious operators are striving to do it as early as 2025. Tackling the carbon footprint associated with network operation will be critical to reaching those targets, given that networks account for the largest part of telcos'' Scope 1 & 2 emissions and more than 25 percent of their average total greenhouse-gas output.
It isn''t only the telcos themselves that are applying pressure to advance decarbonization efforts. The sector is estimated to be responsible for up to 2 percent of global carbon emissions, so its efforts are likely to be both scrutinized and incentivized by sustainability-focused consumers and climate impact funds led by activist investors. Pressure is likely also to come from regulators around the world, as they begin to adopt their own decarbonization goals and factor sustainability considerations into their policies.
Operational considerations: Most telcos today are managing a geographically dispersed network, often with thousands or tens of thousands of sites, a variety of technology configurations, and limited capabilities for remote management. This complexity, combined with still-nascent smart-network management, presents another challenge: 53 percent of our survey respondents said their use of real-time energy monitoring tools, such as smart meters or DC probes, was limited or nonexistent, and many operators indicated they lack granularity in their measurements, with only 33 percent tracking energy KPIs at the individual site level.
To tap into the next level of energy savings, operators have four main tools at their disposal: zero-based design of mobile network sites, optimizing energy use with analytics, strategic innovation in the pricing and sourcing of energy, and decommissioning legacy fixed networks (Exhibit 3). Crucially, a considerable portion of the potential can be achieved without significant investments or major strategic changes, and the results can be quantified within a few weeks of implementation.
Zero-based design of mobile networks: The energy consumption of mobile networks is strongly influenced by the design and layout of each mobile site. Previously, network evolution focused on equipment upgrades, not improved site design. As a result, operators invested in energy-efficient cabinets on new sites, but the opportunity to optimize energy consumption at legacy sites was left on the table. Tapping into this potential requires a detailed understanding of the drivers of energy consumption at current sites through a structured approach that correlates consumption with specific legacy-site design features and includes detailed site walkthroughs to identify overlooked opportunities for lowering costs.
Optimizing cooling equipment is the first step, which often involves recalibrating power to match equipment needs, partitioning shelter space, improving insulation, and enhancing temperature specifications and remote controls. Depending on the region, another tactic might be reducing the need for mechanical refrigeration by using naturally cool air or water. Other substantial savings can be made in site-level consumption through targeted investment in high-efficiency, active equipment such as baseband units (BBU) and radio, rectifiers, and power cables.
Finally, more far-reaching network design optimization can be done through a shift to a centralized RAN architecture, in which multiple sites share network functions located in a "BBU hotel" to achieve benefits of scale and network sharing. However, switching to centralized RAN and network sharing would be a significant, strategic and capital-intensive change and therefore unlikely to be driven solely by energy-optimization considerations. Nevertheless, these initiatives hold substantial potential to curb energy consumption and they should be considered as part of a holistic network cost transformation.
Analytics-driven optimization of energy: While operators have tended to use meters to estimate the active consumption of 4G and 5G equipment, they typically have had limited ability to forecast "normal" consumption for legacy technologies, transmission, and passive equipment. The use of on-site measurement devices like AC and DC probes is expensive, and therefore also limited. Leading telcos use digital twins and analytical models to forecast energy consumption more accurately at individual sites, identify deviations, and define action plans.
Highly detailed correlations of energy consumption with other metrics (network traffic and quality of service, perhaps) for specific sites or for elements of network infrastructure can facilitate real-time decision making. Radio features might be dynamically activated based on site-level thresholds or network load at specific times of day or different seasons, for example, allowing operators to optimize their network where and when it matters most, enhancing customer experience.
In addition to real-time action, data analytics also enables more long-term and structural strategic decision making on energy consumption. By assigning values such as direct average revenue per user (ARPU), customer experience scores, and churn estimates to individual sites or network elements, operators can develop a "return per kWh" metric for different parts of their network infrastructure. This allows them to further adjust network operating conditions, such as radio shutdowns, to minimize energy consumption without impacting actual customer experience.
Decommissioning buildings can also fuel energy optimization by enabling the redesign of cooling systems. Because fiber requires less space for servers, cooling demand can drop dramatically, from whole rooms cooled by industrial-grade air conditioning units to a limited number of racks requiring much simpler cooling solutions. Even if this change does involve some initial capital investment, the savings that result should arrive quickly.
A successful decommissioning is always a cross-organizational effort. The technology and operations organizations have to design and implement the decommissioning, while commercial leadership needs to incentivize migrations and phase out legacy products. Alignment between decommissioning plans, fiber rollout strategy, and capital allocations needed for the desired energy optimization requires involvement of the finance and strategy units.
Achieving this kind of optimization takes more than a vision and strategy for energy consumption. To derive the full value possible from energy optimization, operators need to put in place the right operating model and technology enablers to support it.
Clear decision-making governance: Most telco operating models spread energy decisions across multiple senior stakeholders, usually a combination of chief technology officer, chief procurement officer, and chief sustainability officer. This joint responsibility is not necessarily an impediment to change, but when not supported by clear decision-making governance, the resulting uncertainty can slow transformation and value creation. For example, a chief technology officer may have a vision for reducing consumption through a site design overhaul, but without buy-in from procurement on purchasing, finance on investments, and commercial operations on quality control, there is no way to fully realize the potential of the proposed initiatives.
To successfully support energy transformation, some key operating elements should be in place. First, a single senior leader should own the end-to-end vision and strategy, which includes consumption reduction, price control, and strategic investments to sustain the transformation. That leader should work closely with other senior decision makers in their areas of expertise but should have final responsibility for carrying out the energy vision. Also, the senior leader''s work should be supported by KPIs and clear governance to ensure collaboration across the organization on the shared goal.
Technology enablers: Analytics advancements such as digital twins and IoT devices such as smart meters can help provide detailed and timely understanding of energy consumption across a telco''s network, and even help seize opportunities quickly.
A North American telecom operator used an energy-focused digital twin to achieve an annual energy cost reduction of more than $100 million. By standardizing energy cost and consumption data across its network, the telco was able to identify anomalies and understand underlying drivers more rapidly. Initiatives implemented included data-driven decision making on decommissions, real-time network optimization, and improving the performance of vendor equipment. Additionally, the company uses its digital twin''s standardized data and consumption models to improve calculations of emissions and energy cost forecasting.
Technology can also play an important role in acting on opportunities identified by analytics initiatives. Increasingly, energy optimization levers can be delivered remotely, provided the right technology investments are in place. For example, remote network-management capabilities can enable instant and at-scale implementation of improvement actions, such as air conditioning temperature control and remote capacity optimization. This helps avoid operational complexity, delays, and costly implementation plans, while ensuring consistency in implementation as well as measurement and control of deployed changes.
Telecom operators stand to benefit substantially from thorough energy optimization. Much of the benefit depends on data maturity and deployment of the right analytics. Telcos that are able to do this well are more likely to outperform their peers.
About Telecom tower power consumption
As the photovoltaic (PV) industry continues to evolve, advancements in Telecom tower power consumption have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Telecom tower power consumption for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Telecom tower power consumption featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.