
Geothermal is a lesser-known type of renewable energy that uses heat from the Earth''s molten core to produce electricity.
While this unique feature gives it key benefits over solar and wind, it also suffers from high costs and geographic restrictions. Because of this, few countries have managed to produce geothermal energy at scale.
In this infographic, we''ve used a combination of diagrams and charts to give you a high level overview of this sustainable energy source.
Geothermal energy is produced by accessing reservoirs of hot water that are found several miles below the earth''s surface. In certain parts of the planet, this water naturally breaks through the surface, creating what''s known as a hot spring (or in some cases, a geyser).
When accessed via a well, this pressurized water rises up and rapidly expands into steam. That steam is used to spin a turbine, which then drives an electric generator.
Further along the process, excess steam is condensed back into water as it passes through a cooling tower. An injection well pumps this water back into the Earth to ensure sustainability.
As of 2021, global geothermal power generation amounted to 16 gigawatts (GW). Only a handful of countries have surpassed the 1GW milestone.
To give these numbers context, consider the following datapoints:
While geothermal plants clearly produce less power, they do have benefits over other types of renewables. For example, geothermal energy is not impacted by day-night cycles, weather conditions, or seasons.
We now look at a second dataset, which shows the global contribution of each type of renewable energy. These figures are as of April 2022, and were sourced from the International Renewable Energy Agency (IRENA).
One reason for the slow adoption of geothermal energy is that they can only be built in regions that have suitable geological features (such as places where there is volcanic activity).
To expand on that point, consider the following data from Fitch Solutions, which shows the forecasted growth of geothermal energy capacity by region.
Fitch believes that over the next decade, the majority of new geothermal capacity will be installed in Asia. On the flipside, investment in North America and Western Europe (NAWE) is expected to decrease.
Over the coming years, NAWE will experience a gradual slowdown in geothermal capacity additions as we expect that investments will be crowded out by cheaper wind and solar projects – FITCH SOLUTIONS
The top markets for geothermal are expected to be Indonesia, the Philippines, and New Zealand, which all lie along the Pacific Ring of Fire. The Ring of Fire is a path along the Pacific Ocean where the majority of volcanic activity occurs.
For thousands of years, people have used naturally occurring hot springs to cook food, heat their homes and even bathe in. This kind of energy is known as geothermal.
Electricity has been produced from geothermal sources for more than a century. The first geothermal power plants came online at the beginning of the 20th century. They use technology that drills underground and harnesses steam and hot water in the subsurface of the Earth. This heat then powers turbines that produce electricity.
Geothermal energy covers a significant amount of electricity demand in countries in tectonically active regions such as Iceland, New Zealand, Kenya and the Philippines. They take advantage of being able to drill wells straight into hydrothermal reservoirs that already exist.
Enhanced geothermal systems (EGS), on the other hand, are able to capture heat from areas that traditional geothermal energy cannot, where subsurface fluid and permeability are lacking. They drill deeper into the ground to create artificial thermal reservoirs.
"EGS inject water to tap the heat from hot rock, transforming it into a working geothermal reservoir," the US Department of Energy says. "By engineering a natural system, geothermal energy can produce power anywhere there is heat in the subsurface."
As renewable energy capacity in the form of solar and wind power increases, so does the need to store the electricity these sources generate. This is because power from renewables can fluctuate, as the sun doesn't always shine and the wind doesn't always blow.
Storage technology such as batteries is often used to store excess energy when demand is low and to release it when demand is high, ensuring a steady supply to the grid. However, new research has found that advanced geothermal systems are well suited to the storage of renewable power, and that they could do so at minimal cost compared with other technologies.
This is because advanced geothermal reservoirs can store surplus power generated by wind or solar in the form of hot water or steam, a team from Princeton University and advanced geothermal developer Fervo Energy found. This heat can then be used to turn electricity turbines when renewable power isn''t available.
The researchers'' results show that electricity could be stored for many days, and as efficiently as with lithium-ion batteries. "The storage capacity effectively comes free of charge with construction of a geothermal reservoir," Princeton researcher Wilson Ricks told the Institute of Electrical and Electronics Engineers (IEEE). "It would allow next-generation geothermal plants to break from the traditional baseload operating paradigm and earn much greater value as suppliers of wind and solar" – thereby boosting all three renewable technologies.
The IEEE says EGS systems could then be an ideal solution to store energy as well as produce electricity. "Excess wind or solar energy could be used to inject water into the artificial reservoirs, where it would accumulate and build up pressure. The production wells could then be opened up when electricity is needed."
"The US has a vast, geothermal energy resource lying right beneath our feet and this programme will make it economical to bring that power to American households and businesses," US Energy Secretary Jennifer Granholm says.
Widespread deployment of geothermal heating and cooling would open up routes to decarbonization for entire communities, the DOE adds.
To keep global warming to less than 1.5°C above pre-industrial levels, global emissions need to reach net zero by 2050, according to United Nations estimates.
As the power generation sector is responsible for around a third of total global carbon emissions, it will need to fully decarbonize by 2040 to allow us to meet our climate goals, according to estimates by McKinsey.
Energy consumption and production contribute to two-thirds of global emissions, and 81% of the global energy system is still based on fossil fuels, the same percentage as 30 years ago. Plus, improvements in the energy intensity of the global economy (the amount of energy used per unit of economic activity) are slowing. In 2018 energy intensity improved by 1.2%, the slowest rate since 2010.
Effective policies, private-sector action and public-private cooperation are needed to create a more inclusive, sustainable, affordable and secure global energy system.
Benchmarking progress is essential to a successful transition. The World Economic Forum''s Energy Transition Index, which ranks 115 economies on how well they balance energy security and access with environmental sustainability and affordability, shows that the biggest challenge facing energy transition is the lack of readiness among the world''s largest emitters, including US, China, India and Russia. The 10 countries that score the highest in terms of readiness account for only 2.6% of global annual emissions.
To future-proof the global energy system, the Forum''s Centre for Energy & Materials is working on initiatives including Clean Power and Electrification, Energy and Industry Transition Intelligence, Industrial Ecosystems Transformation, and Transition Enablers to encourage and enable innovative energy investments, technologies and solutions.
Additionally, the Mission Possible Partnership (MPP) is working to assemble public and private partners to further the industry transition to set heavy industry and mobility sectors on the pathway towards net-zero emissions. MPP is an initiative created by the World Economic Forum and the Energy Transitions Commission.
About Renewable geothermal energy
As the photovoltaic (PV) industry continues to evolve, advancements in Renewable geothermal energy have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Renewable geothermal energy for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Renewable geothermal energy featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.
Related Contents