How does a lithium ion battery work

Lithium-ion batteries are incredibly popular these days. You can find them in laptops, PDAs, cell phones and iPods. They're so common because, pound for pound, they're some of the most energetic rechargeable batteries available.
Contact online >>

Lithium-ion batteries are incredibly popular these days. You can find them in laptops, PDAs, cell phones and iPods. They''re so common because, pound for pound, they''re some of the most energetic rechargeable batteries available.

­ Lithium-ion batteries have also been in the news lately. That''s because these batteries have the ability to burst into flames occasionally. It''s not very common — just two or three battery packs per million have a problem — but when it happens, it''s extreme. In some situations, the failure rate can rise, and when that happens you end up with a worldwide battery recall that can cost manufacturers millions of dollars.

Lithium-ion batteries are popular because they have a number of important advantages over competing technologies:

That is not to say that lithium-ion batteries are flawless. They have a few disadvantages as well:

Many of these characteristics can be understood by looking at the chemistry inside a lithium-ion cell. We''ll look at this next. ­

Lithium-ion battery packs come in all shapes and sizes, but they all look about the same on the inside. If you were to take apart a laptop battery pack (something that we DO NOT recommend because of the possibility of shorting out a battery and starting a fire) you would find the following:

If the battery pack gets too hot during charging or use, the computer will shut down the flow of power to try to cool things down. If you leave your laptop in an extremely hot car and try to use the laptop, this computer may prevent you from powering up until things cool off. If the cells ever become completely discharged, the battery pack will shut down because the cells are ruined. It may also keep track of the number of charge/discharge cycles and send out information so the laptop''s battery meter can tell you how much charge is left in the battery.

It''s a pretty sophisticated little computer, and it draws power from the batteries. This power draw is one reason why lithium-ion batteries lose 5 percent of their power every month when sitting idle.

As with most batteries you have an outer case made of metal. The use of metal is particularly important here because the battery is pressurized. This metal case has some kind of pressure-sensitive vent hole. If the battery ever gets so hot that it risks exploding from over-pressure, this vent will release the extra pressure. The battery will probably be useless afterwards, so this is something to avoid. The vent is strictly there as a safety measure. So is the Positive Temperature Coefficient (PTC) switch, a device that is supposed to keep the battery from overheating.

This metal case holds a long spiral comprising three thin sheets pressed together:

Inside the case these sheets are submerged in an organic solvent that acts as the electrolyte. Ether is one common solvent.

The separator is a very thin sheet of microperforated plastic. As the name implies, it separates the positive and negative electrodes while allowing ions to pass through.

The positive electrode is made of Lithium cobalt oxide, or LiCoO2. The negative electrode is made of carbon. When the battery charges, ions of lithium move through the electrolyte from the positive electrode to the negative electrode and attach to the carbon. During discharge, the lithium ions move back to the LiCoO2 from the carbon.

The movement of these lithium ions happens at a fairly high voltage, so each cell produces 3.7 volts. This is much higher than the 1.5 volts typical of a normal AA alkaline cell that you buy at the supermarket and helps make lithium-ion batteries more compact in small devices like cell phones. See How Batteries Work for details on different battery chemistries.

We''ll look at how to prolong the life of a lithium-ion battery and explore why they can explode next.

Lithium-ion battery packs are expensive, so if you want to make yours to last longer, here are some things to keep in mind:

Now that we know how to keep lithium-ion batteries working longer, let''s look at why they can explode.

If the battery gets hot enough to ignite the electrolyte, you are going to get a fire. There are video clips and photos on the Web that show just how serious these fires can be. The CBC article,"Summer of the Exploding Laptop," rounds up several of these incidents.

When a fire like this happens, it is usually caused by an internal short in the battery. Recall from the previous section that lithium-ion cells contain a separator sheet that keeps the positive and negative electrodes apart. If that sheet gets punctured and the electrodes touch, the battery heats up very quickly. You may have experienced the kind of heat a battery can produce if you have ever put a normal 9-volt battery in your pocket. If a coin shorts across the two terminals, the battery gets quite hot.

In a separator failure, that same kind of short happens inside the lithium-ion battery. Since lithium-ion batteries are so energetic, they get very hot. The heat causes the battery to vent the organic solvent used as an electrolyte, and the heat (or a nearby spark) can light it. Once that happens inside one of the cells, the heat of the fire cascades to the other cells and the whole pack goes up in flames.

It is important to note that fires are very rare. Still, it only takes a couple of fires and a little media coverage to prompt a recall.

Lithium-ion batteries power the lives of millions of people each day. From laptops and cell phones to hybrids and electric cars, this technology is growing in popularity due to its light weight, high energy density, and ability to recharge.

This animation walks you through the process.

A battery is made up of an anode, cathode, separator, electrolyte, and two current collectors (positive and negative). The anode and cathode store the lithium. The electrolyte carries positively charged lithium ions from the anode to the cathode and vice versa through the separator. The movement of the lithium ions creates free electrons in the anode which creates a charge at the positive current collector. The electrical current then flows from the current collector through a device being powered (cell phone, computer, etc.) to the negative current collector. The separator blocks the flow of electrons inside the battery.

While the battery is discharging and providing an electric current, the anode releases lithium ions to the cathode, generating a flow of electrons from one side to the other. When plugging in the device, the opposite happens: Lithium ions are released by the cathode and received by the anode.

The two most common concepts associated with batteries are energy density and power density. Energy density is measured in watt-hours per kilogram (Wh/kg) and is the amount of energy the battery can store with respect to its mass. Power density is measured in watts per kilogram (W/kg) and is the amount of power that can be generated by the battery with respect to its mass. To draw a clearer picture, think of draining a pool. Energy density is similar to the size of the pool, while power density is comparable to draining the pool as quickly as possible.

The Department of Energy’s Vehicle Technologies Office (VTO) works on increasing the energy density of batteries, while reducing the cost, and maintaining an acceptable power density. For more information on VTO’s battery-related projects, please visit the Vehicle Technologies Office website.

Subscribe for the Latest in Science & Tech!

Pioneering work of the lithium battery began in 1912 under G.N. Lewis, but it was not until the early 1970s that the first non-rechargeable lithium batteries became commercially available. Attempts to develop rechargeable lithium batteries followed in the 1980s but failed because of instabilities in the metallic lithium used as anode material. (The metal-lithium battery uses lithium as anode; Li-ion uses graphite as anode and active materials in the cathode.)

Lithium is the lightest of all metals, has the greatest electrochemical potential and provides the largest specific energy per weight. Rechargeable batteries with lithium metal on the anode could provide extraordinarily high energy densities; however, it was discovered in the mid-1980s that cycling produced unwanted dendrites on the anode. These growth particles penetrate the separator and cause an electrical short. The cell temperature would rise quickly and approach the melting point of lithium, causing thermal runaway, also known as "venting with flame." A large number of rechargeable metallic lithium batteries sent to Japan were recalled in 1991 after a battery in a mobile phone released flaming gases and inflicted burns to a man''s face.

The inherent instability of lithium metal, especially during charging, shifted research to a non-metallic solution using lithium ions. In 1991, Sony commercialized the first Li ion, and today this chemistry has become the most promising and fastest growing battery on the market. Although lower in specific energy than lithium-metal, Li ion is safe, provided the voltage and currents limits are being respected. (See BU-304a: Safety Concerns with Li-ion)

The key to the superior specific energy is the high cell voltage of 3.60V. Improvements in the active materials and electrolytes have the potential to further boost the energy density. Load characteristics are good and the flat discharge curve offers effective utilization of the stored energy in a desirable and flat voltage spectrum of 3.70–2.80V/cell.

In 1994, the cost to manufacture Li-ion in the 18650 cylindrical cell was over US$10 and the capacity was 1,100mAh. In 2001, the price dropped to below $3 while the capacity rose to 1,900mAh. Today, high energy-dense 18650 cells deliver over 3,000mAh and the costs are dropping. Cost reduction, increased specific energy and the absence of toxic material paved the road to make Li-ion the universally accepted battery for portable applications, heavy industries, electric powertrains and satellites. The 18650 measures 18mm in diameter and 65mm in length. (See BU-301: A look at Old and New Battery Packaging)

About How does a lithium ion battery work

About How does a lithium ion battery work

As the photovoltaic (PV) industry continues to evolve, advancements in How does a lithium ion battery work have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient How does a lithium ion battery work for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various How does a lithium ion battery work featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.