Central Building:Mustafa Kemal DistrictDumlupınar Avenue 7. Km No: 166Postal Code: 06510Çankaya/ANKARA/TÜRKİYETel. Operator: +90 (312) 295 50 00 Contact online >>
Central Building:Mustafa Kemal DistrictDumlupınar Avenue 7. Km No: 166Postal Code: 06510Çankaya/ANKARA/TÜRKİYETel. Operator: +90 (312) 295 50 00
Tax Office:Ankara Kurumlar Vergi Dairesi MüdürlüğüYenimahalle/ANKARATax Number: 331 0236 046
To be informed about our services and activities, you can like the EÜAŞ Facebook page and follow the EÜAŞ Twitter account. Do not forget to share your valuable comments with us.
Turkey uses more electricity per person than the global average, but less than the European average, with demand peaking in summer due to air conditioning. Most electricity is generated from coal, gas and hydropower, with hydroelectricity from the east transmitted to big cities in the west. Electricity prices are state-controlled, but wholesale prices are heavily influenced by the cost of imported gas.
Each year, about 300 terawatt-hours (TWh) of electricity is used, which is almost a quarter of the total energy used in Turkey. On average, about four hundred grams of carbon dioxide is emitted per kilowatt-hour of electricity generated (400 gCO2/kWh); this carbon intensity is slightly less than the global average. As there is 100 GW of generating capacity, far more electricity could be produced. Although only a tiny proportion is exported; consumption is forecast to increase, and there are plans for more exports during the 2020s.
As of 2021[update], household electricity consumption is estimated to average 230 kWh a month[16] and is dominated by refrigerators, followed by televisions then washing machines.[17] Space heating and electric vehicles have the biggest potential for demand side response.[18]: 51
Between 2019 and 2024, Turkey plans to invest US$11 billion into energy efficiency;[19] and by 2035 replace 80% of electricity meters with smart meters.[20] Electricity''s share of energy consumption is expected to increase, from 22% in 2019 to perhaps 28% in 2040, partly due to electrification of road transport.[21]
Demand forecasting is important, because constructing too much electricity generation capacity can be expensive, both for government energy subsidies and private sector debt interest.[22][23] Conversely, constructing too little risks delaying the health benefits of electrification, the biggest of which is cleaner air due to fossil fuel phase-out.[24]
Distribution companies, some retail companies, and industrial zones send their demand forecasts to the Energy Ministry and the Turkish Electricity Transmission Corporation (TEIAŞ) every year.[4]: 21 TEİAŞ then publishes low, base and high 10 year forecasts,[4]: 21 using the "DECADES" model; whereas the Energy Ministry uses the "Model for Analysis of Energy Demand".[25]
Some official demand forecasts are overestimated,[30][31][32] which could be due to low economic growth.[33][34] In 2019 actual generation was 76% of firm capacity, and overcapacity continued into the early 2020s.[34][35] In 2022 and 2023 demand decreased, partly due to industry''s share of the economy decreasing.[36]: 20
Coal in Turkey generated a third of the nation''s electricity in 2023.[50] There are 55 active coal-fired power stations with a total capacity of 21 gigawatts (GW).[note 1] In 2023 coal imports for electricity generation cost 3.7 billion USD.[50]: 4
Air pollution from coal-fired power stations is damaging public health,[52]: 48 and it is estimated that a coal phase-out by 2030 instead of by the 2050s would save over 100,000 lives.[53] Flue gas emission limits were improved in 2020, but data from mandatory reporting of emission levels is not made public. Turkey has not ratified the Gothenburg Protocol, which limits fine dust polluting other countries. As of 2023 official health impact assessment is not done in Turkey.[54]: 50
Turkey''s coal is almost all low calorie lignite, but government policy supports its continued use. In contrast, Germany is closing lignite-fired stations under 150 MW.[55] Drought in Turkey is frequent, but thermal power stations use significant amounts of water.[56]
In 2020, power plants consumed 29% of natural gas in Turkey.[64] State-owned gas-fired power plants are less efficient than private plants, but can out-compete them, as the state guarantees a price for their electricity.[65] Gas power plants are used more when drought reduces hydropower, such as in 2021[66] which was a record year for gas consumption.[67] The National Energy Plan published in 2023 forecasts 10 GW more gas power plants will be built.[68]
Wind power generates about 10% of Turkey''s electricity, mainly in the west in the Aegean and Marmara regions, and is gradually becoming a larger share of renewable energy in the country. As of 2024[update], Turkey has 12 gigawatts (GW) of wind turbines. The Energy Ministry plans to have almost 30 GW by 2035, including 5 GW offshore.[75]
The state-owned Electricity Generation Company (EÜAŞ) has about 20% of the market,[76] and there are many private companies.[77] The highest ever daily share of wind power was 25%, in 2022.[78]
There is almost 2 GW of geothermal and sites for much more including enhanced geothermal systems.[93] However carbon dioxide emissions can be high, especially for new plants, so to prevent carbon dioxide dissolved out of the rocks being released into the atmosphere the fluid is sometimes completely reinjected after its heat is used.[94]
Turkey''s first nuclear power plant, at Akkuyu, is planned to start generation in 2023, and is expected to last for at least 60 years.[95] The nuclear power debate has a long history, with the 2018 construction start in Mersin Province being the sixth major attempt to build a nuclear power plant since 1960.[96] Nuclear power has been criticised, as being very expensive to taxpayers.[97]
Plans for a nuclear power plant at Sinop and another at İğneada have stalled.[98]
Hybrid generation became more popular in the early 2020s.[99] If distributed generation installed power is under 11 kW, it is only allowed to be connected to the low voltage network, not the high voltage network.[100] The first virtual power plant was created in 2017 with wind, solar and hydropower; and geothermal was added in 2020.[101]
About Electricity ankara
As the photovoltaic (PV) industry continues to evolve, advancements in Electricity ankara have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Electricity ankara for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Electricity ankara featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.